# **AEM-DRB** Multi-Circuit Power Meter (DIN Rail) ADTEK

## Description

Due to climate change and global warming crisis caused by excess carbon dioxide emissions, energy conservation and carbon reduction have always been important issues. In addition, The EU has committed to be carbon neutral by 2050 and decided to proceed carbon border tax. Besides Corporate Social Responsibility (CSR), the companies are facing the impact of the rising cost.



In response to the market trend and customer needs, ADTEK develops AEM-DRB multi-loop power meters using high-performance advanced microprocessors and high-resolution fast sampling AD. It is small, easily installed, multfunctional, and at reasonable price.

AEM-DRB is built with 2 main circuits, and it can proceed the outputs of 24 single phase or 8 three-phase. Different phases can be connected together for the workplace with different electrical circuits to save the cost. In addition, It is equipped with RS485 Modbus communication, input, output interface, LCD display, demand, TOU, data log and 2MB memory capacity. To be more widely available, it can go with the 2nd communication port( optional).

## **Features**

- DIN Rail mounting and with clamp-on CT measurement achieves space saving and the reduction of time installation.
- 30-loop design for current input measurement: 6 loops for main circuits; 24 loops for branch circuits
- Flexible phase wire connection: a set of three current terminals can be set as 1P2W/ 1P3W/ 3P3W/ 3P4W to proceed load measurement depends on the setting of the phase wire for main curcuit.
- Example: when one of the branch loops was set as 1P2W, then each current terminal could connect with other phase voltage to achieve load balancing( main circuit is set as 3P4W).
- There're 15 current terminals on upper and lower sides which are completely isolated. They can be used for dual power system measurement.
- Each loop is equipped with the function of THD and 31st HD measurement that can be applied on the monitoring of power quality in the industries of precise manufacturing/ semiconductor devices.
- Each loop is able to proceed TOU for electricity cost sharing of rental market.
- Offer 2MB Flash ROM for data log.
- Dot-matrix LCD display with conversational user interface, easy for on-site operation; offer setting software for batch setting.
- Offer 2 sets of DI and 4 sets of relay outputs for multiple function of I/O control functions for on-site monitoring/alarm.
- Offer 1 set of RS485 Modbus RTU and optional requirement for another set of RS485, or Ethernet (Modbus/TCP).
- Optional colorful touch screen over 7" size (HMI) for job site needs.
- Designed to CE standard and Cat II standard.

## Applications

• Rental buildings / apartment

• Street shops/ workshops

Dormitories/ exhibition booths

• Aims at distributed electricity management

## Ordering Information

## 10 Loops



## Meter Selection Guide

|                     |                                                                                               | DRB1 | DRB2 | DRB3 |
|---------------------|-----------------------------------------------------------------------------------------------|------|------|------|
| Voltage             | Total and per phase                                                                           |      |      |      |
| Current             | Total and per phase of main loop and branch loop                                              |      |      |      |
| Active Power        | Total and per phase of main loop and branch loop                                              |      |      |      |
| Reactive Power      | Total and per phase of main loop and branch loop                                              |      |      |      |
| Apparent Power      | Total and per phase of main loop and branch loop                                              |      |      |      |
| Power Factor        | Total and per phase of main loop and branch loop                                              |      |      |      |
| Frequency           | Frequency                                                                                     |      |      |      |
| Active Energy       | Total and per phase of main loop and branch loop                                              |      |      |      |
| Reactive Energy     | Total and per phase of main loop and branch loop                                              |      |      |      |
| Apparent Energy     | Total and per phase of main loop and branch loop                                              |      |      |      |
| THD/Voltage         | Total and per phase (True RMS and Fundamental)                                                |      |      |      |
| THD/Current         | Total and per phase of main loop and branch loop (True RMS and Fundamental)                   |      |      |      |
| Individual Harmonic | 2nd~31st Individual harmonics of main loop and branch loop                                    |      |      |      |
| Demand              | Per phase and 3-phase of current and power                                                    |      |      |      |
| Unbalance           | Current and voltage                                                                           |      |      |      |
| Max/Min Values      | Per phase and 3-phase of parameters values                                                    |      |      |      |
|                     | The following parameters can be set to logging:                                               |      |      |      |
| Data Logging        | frequency, phase voltage, line voltage, current of each loop, active/reactive/apparent power, |      |      |      |
|                     | active/reactive/apparent energy                                                               |      |      |      |
| 1st Port of Comm.   | RS-485 Modbus RTU                                                                             |      |      |      |
| 2nd Port of Comm.   | RS-485 Modbus RTU or Ethernet Modbus TCP                                                      | 0    | 0    | 0    |
| Digital Input       | DI1, DI2                                                                                      |      |      |      |
| Pulse Output        | PO                                                                                            |      |      |      |
| Relay Output        | R01, R02, R03, R04                                                                            |      |      |      |
| Time of Use         | 4 time zones, 8 periods, 4 tariff                                                             |      |      |      |
| Date and Time       | Year, Month, Day, Hour, Minute, Second                                                        |      |      |      |
| Timer               | Operating hours, Running hours                                                                |      |      |      |

Optional



| Accuracy | & | Resolutions |
|----------|---|-------------|
|----------|---|-------------|

| Parameter           | Accuracy | Resolution | Measurement Range           |
|---------------------|----------|------------|-----------------------------|
| Voltage             | 0.2%     | 0.1V       | 20~400V L-N / 35~690V L-L   |
| Current             | 0.2%     | 0.001A     | 1%~120% CT rating current   |
| Neutral Current     | 1.0%     | 0.001A     | 1%~120% CT rating current   |
| Active Power        | 0.5%     | 1W         | -999,999,999~999,999,999W   |
| Reactive Power      | 0.5%     | 1Var       | -999,999,999~999,999,999Var |
| Apparent Power      | 0.5%     | 1VA        | 0~999,999,999VA             |
| Power Factor        | 0.5%     | 0.001      | -0.020~+1.000~0.020         |
| Frequency           | 0.1%     | 0.01Hz     | 45.00~65.00Hz               |
| Active Energy       | 0.5%     | 0.1kWh     | 0~99,999,999.9kWh           |
| Reactive Energy     | 0.5%     | 0.1kVarh   | 0~99,999,999.9kVarh         |
| Apparent Energy     | 0.5%     | 0.1kVAh    | 0~99,999,999.9kVAh          |
| THD                 | 1.0%     | 0.1%       | 0~100.0%                    |
| Individual Harmonic | 1.0%     | 0.1%       | 0~100.0%                    |
| Unbalance           | 0.5%     | 0.1%       | 0~300.0%                    |

\*Accuracy non-include clamp CT ratio error

## Technical Specification

#### **Electrical Characteristics**

| Measurement:          | True RMS measurement                          |  |  |
|-----------------------|-----------------------------------------------|--|--|
| Sample rate:          | 256 point/cycle                               |  |  |
| Input channel:        | 2 main loop input                             |  |  |
|                       | 8 channels three-phase or                     |  |  |
|                       | 24 channels single-phase                      |  |  |
| Display refresh rate: | 0.5s                                          |  |  |
| Power system:         | 1P2W, 1P3W, 3P3W, 3P4W                        |  |  |
| Input range:          | Voltage: 20~400VLN; 35~690VLL                 |  |  |
|                       | PT primary ratio:100V~9999KV                  |  |  |
|                       | PT secondary ratio:50~600V                    |  |  |
|                       | Current:                                      |  |  |
|                       | Main loop input:5A / 1A / 333mV               |  |  |
|                       | Branch loop input:333mV                       |  |  |
|                       | CT primary ratio:5~9999A                      |  |  |
| Frequency:            | 45~65Hz                                       |  |  |
| Overload capacity:    | Voltage: 2 x rated continuous; 2500V / 1s     |  |  |
|                       | Current: 2 x rated continuous; 20x rated / 1s |  |  |

#### Power Quality

| THD:                 | Total harmonic distortion for voltage and current    |  |  |
|----------------------|------------------------------------------------------|--|--|
|                      | (True RMS and Fundamental)                           |  |  |
| Individual harmonic: | 2nd~31st individual harmonics of voltage and current |  |  |
|                      | and odd, even harmonic content                       |  |  |
| Unbalance:           | 3-phase voltage and current                          |  |  |

#### **Display Characteristics**

| Display panel: | 128*64 dots matrix LCD with white backlight |
|----------------|---------------------------------------------|
| LED indicator: | Power / COM1 / COM2 / Data logging / TOU    |

#### Demand

Calculation method: Block / Sliding Period: 1~60 min

#### Relay Output(RO)

| Relay capacity:   | 4 channels SPST(1a); 5A/250Vac; 5A/30Vdc          |
|-------------------|---------------------------------------------------|
| Function mode:    | Alarm / DO                                        |
| Action mode:      | Hi / Lo / Hi.Hold / Lo.Hold                       |
| Alarm set points: | Each relay can set 12 groups of alarm conditions, |
|                   | and each condition can correspond to 34 loops and |
|                   | 12 parameters for alarm setting                   |

#### Digit Inpu

| Digital Input(DI)   |                                                     |  |  |  |
|---------------------|-----------------------------------------------------|--|--|--|
| Input capacity:     | 2 channels digital input; mechanical contact or     |  |  |  |
|                     | open collector input are available                  |  |  |  |
| Function mode:      | Can be set to DI / Demand reset /                   |  |  |  |
|                     | Max. Demand reset / Energy reset /                  |  |  |  |
|                     | Max. and Min. reset / Relay reset                   |  |  |  |
| Debouncing time:    | 0~99 (x8mS) programable                             |  |  |  |
|                     |                                                     |  |  |  |
| Output capacity:    | Open collector( $\Omega(C)$ ) 30V/dc 30mA(max)      |  |  |  |
| Corresponding item: | Active or Reactive energy of any loop               |  |  |  |
| Output frequency:   | 40Hz (max)                                          |  |  |  |
| Test pulse output:  | 3200 Pulse/kWh: duty cycle 50%                      |  |  |  |
|                     | Can correspond to the active or reactive energy     |  |  |  |
|                     | of any loop                                         |  |  |  |
|                     | 2 I-                                                |  |  |  |
| TOU (Time of Use)   |                                                     |  |  |  |
| 4 time zones:       | 1~4 zones per year                                  |  |  |  |
| 8 periods:          | Each time zone can set 1~8 periods                  |  |  |  |
|                     | The sharp, peak, valley and normal tariff can be    |  |  |  |
|                     | specified for each period                           |  |  |  |
| Parameters in TOU:  | Import active energy, import reactive energy, total |  |  |  |
|                     | apparent energy cumulative value and current and    |  |  |  |
|                     | power maximum demand for the current month          |  |  |  |
|                     | and last month of each tariff and each loop         |  |  |  |
| Holiday setting:    | The date and timetable of holiday for five years    |  |  |  |
|                     | can be set individually or set on the same holiday  |  |  |  |
|                     | for five years                                      |  |  |  |
| Data Log            |                                                     |  |  |  |
| Log setting:        | The specified parameters can be recorded            |  |  |  |
| 0 0                 | according to the set interval time, the interval    |  |  |  |
|                     | time can be set from 1 to 32767, and the interval   |  |  |  |
|                     | time unit can be set as day, hour, minute, second   |  |  |  |
| Memory storage:     | 2MB Flash ROM                                       |  |  |  |
|                     |                                                     |  |  |  |
| RS-485 Communicati  | on (2nd RS-485 port is optional)                    |  |  |  |
| Protocol:           | IVIODDUS RIU mode                                   |  |  |  |
| Baud rate:          | 1200/2400/4800/9600/19200/38400/57600/              |  |  |  |
| Dooponoo timo:      |                                                     |  |  |  |
| Response time:      | Nourio<br>9 bite                                    |  |  |  |
| Dala Dils.          | o pils<br>Nana / Evan / Odd                         |  |  |  |
| Failly.             | 1 or 2                                              |  |  |  |
| Addross:            | 1 UI Z<br>1~247                                     |  |  |  |
| Audress.            | 1~241<br>1200M may                                  |  |  |  |
| Distance.           |                                                     |  |  |  |
|                     |                                                     |  |  |  |

#### Ethernet (Optional)

Interface: 10/100M BASE-TX, RJ45 connector Protocol: Modbus TCP

#### **Environmental Conditions**

Operating temp .: 0~60℃ Humidity rating: 5~95%RH, Non-condensing Temp. coefficient: ≦ 100 PPM/°C -10~70°C Storage temp.: Degree of protection: IP20 Operating altitude(maximum): 2000m above sea-level

Power Supply Range:

# AEM-DR

Power consumption: AC:15VA, DC:5W

#### Mechanical Structure

| Dimensions:    | 199mm(L)x118mm(W)x77mm(H)                          |
|----------------|----------------------------------------------------|
| Material:      | ABS, Black (with fire-retardant)                   |
| Mounting:      | 35mm DIN Rail (EN50022)                            |
| Wire terminal: | Voltage / Main loop current / Power / DI / RO / PO |
|                | AWG:28~12 / 0.08~3.31mm <sup>2</sup>               |
|                | Screw Torque Value: M2.5 / 5.202kgf.cm (Max)       |
|                | Branch loop current / RS-485:                      |
|                | AWG:28~14 / 0.08~2.08mm <sup>2</sup>               |
|                | Screw Torque Value: M2 / 2.04kgf.cm (Max)          |
| Weight:        | 600g±20g                                           |

AC 85~264V, 50/60Hz

DC 100~300V

Safety

| Isolation:            | AC 2.5KV, 50/60Hz, for 1 min, Between Power / |
|-----------------------|-----------------------------------------------|
|                       | Input / Output / Case                         |
| Surge:                | AC±4KV, 1.2/50us; Voltage input/ Power        |
| Insulation resistance | $r \ge 100 M\Omega @ 500 V dc$                |
| EMC:                  | EN61326-1:2013                                |
|                       | EN55011:2016                                  |
|                       | EN61000-3-2:2014                              |
|                       | EN61000-3-3:2013                              |
|                       | IEC61000-4-2:2008                             |

#### IEC61000-4-3:2006+A1:2007+A2:2010 IEC61000-4-4:2012 IEC61000-4-5:2014+A1:2017 IEC61000-4-6:2013/COR1:2015 IEC61000-4-8:2009 IEC61000-4-11:2009 IEC61000-4-11:2010+A1:2017 EN61010-1:2010+A1:2019 FCC 47 CFR Part15 Subpart B Class A

#### Accuracy Standard

Safety(LVD):

FCC:

Measurement accuracy: Active energy: Reactive energy: IEC 61557-12 : 2018/AMD1 : 2021 Class 0.5S(IEC 62053-22:2020) Class 0.5S(IEC 62053-24:2020)

## Dimensions



Terminal Block





## Meter Wiring Connection (10 Loops) - Main Loop (Ma \ Mb)

The two main loop of Ma and Mb are isolated design and can be connected to the different power system. Please refer to the following wiring example for description.

Example 2:

Twin Main Loop: 3P4W+3P3W

#### Example 1:

Single Main Loop: 3P4W CT input can be connected with Ma or Mb.



V1V2 V3VN 7 8 9 10 1112 K L K L K L 
13
14
14
16
17
14
18
16
17
18
33
34
55
36

K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
Ма PE N L 1 V1 3 V2 5 V3 6 VN 00000 41 V1 43 V2 45 V3 46 VN Mb-I1 Mb-I2 Mb-I3 Mb 
Bb.11
Bb.12
Bb.13
Bb.14
Bb.15
Bb.16
Bb.17
Bb.18
Bb.19

53
54
55
56
57
59
59
60
62
63
64
65
66
61
66
67
60
70

KLKLKLKL
KLKLKL
<thK П 0 V1 V2 V3

Example 3: Twin Main Loop: 3P4W+1P3W



Twin Main Loop: 3P4W+1P2W V1V2 V3VN

Example 4:



## Meter Wiring Connection (10 Loops) - Branch Loop (Attention: the secondary side of clamp CT is 333mVac)

The voltage of each loop corresponds to the default, such as Ba 1~3 corresponds to V1~V3, and so on. The corresponding voltage phase can be set and adjusted according to the phase line measured by the actual CT.

Each loop can independently set the wiring system, but it will be limited according to the power system, see the table below:

| Dowor ovetem | available wiring system of the branch loop |      |      |      |  |
|--------------|--------------------------------------------|------|------|------|--|
| Power system | 1P2W                                       | 1P3W | 3P3W | 3P4W |  |
| 1P2W         | 0                                          | Х    | Х    | Х    |  |
| 1P3W         | 0                                          | 0    | Х    | Х    |  |
| 3P3W         | 0                                          | Х    | 0    | Х    |  |
| 3P4W         | 0                                          | Х    | 0    | 0    |  |

Example 1: Power system: Ma=Mb=3P4W



Example 2: Power system: Ma=3P4W Mb=3P3W





#### Example 3: Power system: Ma=3P4W

Mb=1P3W



VL1 VN VL2

Example 4: Power system: Ma=3P4W Mb=1P2W



## Meter Wiring Connection (5 Loops) - Main Loop (Ma Mb)







## Meter Wiring Connection (5 Loops) - Branch Loop (Attention: the secondary side of clamp CT is 333mVac)

The voltage of each loop corresponds to the default, such as Ba 1~3 corresponds to V1~V3, and so on. The corresponding voltage phase can be set and adjusted according to the phase line measured by the actual CT.

Each loop can independently set the wiring system, but it will be limited according to the power system, see the table below:

| Power eveter | available wiring system of the branch loop |      |      |      |  |
|--------------|--------------------------------------------|------|------|------|--|
| Power system | 1P2W                                       | 1P3W | 3P3W | 3P4W |  |
| 1P2W         | 0                                          | Х    | Х    | Х    |  |
| 1P3W         | 0                                          | 0    | Х    | Х    |  |
| 3P3W         | 0                                          | Х    | 0    | Х    |  |
| 3P4W         | 0                                          | Х    | 0    | 0    |  |

Example 1: Power system: 3P4W



Example 2: Power system: 3P3W





Example 3: Power system: 1P3W



Example 4: Power system: 1P2W





## Pulse Output



## Output & Input Connection

| Re                                                  | ay Output  | Digital Input         |                    |                         |               |
|-----------------------------------------------------|------------|-----------------------|--------------------|-------------------------|---------------|
|                                                     |            |                       |                    |                         |               |
| RO1 R<br>801 R<br>77 78 75                          | O2 RO3 RO4 | DI1DI2COM             |                    |                         |               |
| RS485<br>COM2 (Ma)Main loop<br>Current signal input | Ba1~3      | Ba4~6<br>Ba branch lo | Ba7~9<br>op curren | Ba10~12<br>signal input | RS485<br>COM1 |

| R                                      | elay Output                                     | Digital Input                       |         |               |
|----------------------------------------|-------------------------------------------------|-------------------------------------|---------|---------------|
| ко1<br>Н                               |                                                 |                                     |         |               |
| RO1<br>77 78                           | RO2 RO3 RO4<br>8 8 8 8 8 8<br>79 80 81 82 83 84 | DI1DI2 СОМ                          |         |               |
| LAN (Ma)Main loop<br>Current signal in | Ba1~3                                           | Ba4~6 Ba7~9<br>Ba branch loop curre | Ba10~12 | RS485<br>COM1 |

## Communication and Power Supply



## Split Core CT Ordering Information (Optional)

| US-CTV — Hole — Primary Current |      |               |      | urrent        |
|---------------------------------|------|---------------|------|---------------|
| (                               | CODE | Diameter(mm)  | CODE | Rated Current |
|                                 | 10   | Ф10           | 005  | 5A            |
|                                 | 16   | <b>16</b> Φ16 | 060  | 60A           |
|                                 | 10   |               | 100  | 100A          |
|                                 | 24   | Ф24           | 200  | 200A          |
|                                 |      | Ф35           | 300  | 300A          |
| 35                              | 35   |               | 400  | 400A          |
|                                 |      |               | 600  | 600A          |

(The output line of mV on the secondary side of the CT needs to be wired independently, and cannot be connected together or grounded for protection purposes.)



| Туре          | Primary    | Secondary          | Accuracy | Weight |  |
|---------------|------------|--------------------|----------|--------|--|
|               | Current(A) | Output Voltage(mV) | %F.S.    |        |  |
| US-CTV-10-005 | 5A         | 333                | 1.0      | 60g    |  |
| US-CTV-16-060 | 60A        | 333                | 0.5      | 100g   |  |
| US-CTV-16-100 | 100A       | 333                | 0.5      | 100g   |  |
| US-CTV-24-200 | 200A       | 333                | 0.5      | 205g   |  |
| US-CTV-35-300 | 300A       | 333                | 0.5      | 375g   |  |
| US-CTV-35-400 | 400A       | 333                | 0.5      | 375g   |  |
| US-CTV-35-600 | 600A       | 333                | 0.5      | 375g   |  |

## Human-Machine Interface (Optional)

## Model: AD-HMI2070-31ST

- 7" colorful touch screen, resolution: 800x400
- 4-wire resistive touch screen
- DC24V power supply
- Front panel with IP65 protection degree
- Allowing up to six AEM-DRB devices connected to one HMI by RS-485 communication
- Providing parameters of main and branch loops, such as, voltage, current, frequency, power factor, power, energy, demand
- Dimensions: 203.5 x 148.5 x 37mm

\*For more details, please see AD-HMI datasheet.



