CST-VA VOLT / CURRENT Meter

DESCRIPTION

CS1-VA economic type Voltage/Current Indicator has been designed with high accuracy measurement, display and communication of $0 \sim 600 \mathrm{~V}$ or $0 \sim 10 \mathrm{~A}$ for DC/AC/TMRS.
They are also available 1 option of 1 Relay outputs, 1 Analogue output or 1 RS485 (Modbus RTU Mode) interface with versatile functions such as control, alarm, re-transmission or communication for a wide
 range of industrial and testing applications.

- FEATURE

- Measuring Voltage 0~600V or Current 0~10A for DC / AC / TRMS
- Option available 1 of 1 relay, 1 analogue output or RS485(Modbus RTU mode)
- 1 relay can be programmed individual to be a Hi/ Lo / Hi Latch / Lo Latch energized with Start Delay / Hysteresis / Energized \& De-energized Delay functions.
- Analogue output or RS 485 communication port in option
- CE Approved \& RoHS

- APPLICATIONS

- Testing Equipments for Volt/Current Measuring, Alarm, Control and Communication with PC/PLC - MCC panel, Machinery, Switch gear... for Voltage or Current Measuring, Alarm and Remote I/O with PC/PLC

ORDERING INFORMATION

TECHNICAL SPECIFICATION

Input
Measuring Range DC / AC / TRMS Input Impedance Measuring Range DC / AC / TRMS Input Impedance Voltage $0 \sim 50 / \sim 100 \mathrm{mV}$ $\geq 5 \mathrm{M} \mathrm{ohm}$ Current $0 \sim 199.99 \mathrm{AA}$ 1 K ohm $0 \sim 199.99 \mathrm{mV}$ $\geq 5 \mathrm{M} \mathrm{ohm}$ $0 \sim 1.9999 \mathrm{~mA}$ 100 ohm $0 \sim 1.9999 \mathrm{~V}$ $\geq 1 \mathrm{M}$ ohm $0 \sim 19.999 \mathrm{~mA}$ 10 hm $0 \sim 19.999 \mathrm{~V}$ $\geq 1 \mathrm{M} \mathrm{ohm}$ $0 \sim 199.99 \mathrm{~mA}$ 10 hm $0 \sim 199.99 \mathrm{~V}$ $\geq 1 \mathrm{M} \mathrm{ohm}$ $0 \sim 1.9999 \mathrm{~A}$ 0.05 ohm $0 \sim 300.0 \mathrm{~V}$ $\geq 2 \mathrm{M} \mathrm{ohm}$ $0 \sim 5.000 \mathrm{~A}$ 0.02 hm $0 \sim 600.0 \mathrm{~V}$ $\geq 2 \mathrm{M} \mathrm{ohm}$ $0 \sim 10.000 \mathrm{~A}$ 0.01 hm

Calibration:
A/D converter:
Accuracy:

Sampling rate:
Response time:

Display \& Functions

LED:

Digital calibration by front key
16 bits resolution
DC: $\leq \pm 0.04 \%$ of $\mathrm{FS} \pm 1 \mathrm{C}$
$\mathrm{AC}: \leq \pm 0.1 \%$ of $\mathrm{FS} \pm 1 \mathrm{C}$
15 cycles/sec
$\leq 100 \mathrm{~m}$-sec. (when the R. u . $=$ " " 1 ") in standard

Numeric: 5 digits, $0.8^{\prime \prime}(20.0 \mathrm{~mm}) \mathrm{H}$ red high-brightness LED
Relay output indication: 1 square red LED
RS 485 communication: 1 square orange LED
E.C.I. function indication: 1 square green LED

Max/Mini Hold indication: 2 square orange LED Down key function indication (Reset for Max. (Mini.) Hold / PV Hold / Relative. PV): 1 square green LED
Display range: -19999~29999;

Scaling function:	Lo.SC : Low Scale; Settable range: -19999~+29999 H. 5 [: High Scale; Settable range: -19999~+29999
Decimal point:	Programmable from $0 / 0.0 / 0.00 / 0.000 / 0.0000$
Over range indication:	ouFL , when input is over 20% of input range Hi
Under range indication:	- ouFL , when input is under - 20% of input range Lo
Max / Mini recording:	Maximum and Minimum value storage during power on.
Display functions:	PV / Max(Mini) Hold / RS 485 Programmable
Front key functions:	Relative PV / PV Hold / Reset for maxi(mini) hold / Reset for relay energized latch programmable
Low cut:	Settable range: -19999~29999 counts
Digital fine adjust:	Pu.Pro: Settable range: -19999~+29999
	Pu.5Pn: Settable range: -19999~+29999

Reading Stable Function

Average:	Settable range: $1 \sim 99$ times
Moving average:	Settable range: 1 (None) ~ 10 times
Digital filter:	Settable range: $0($ None $) / 1 \sim 99$ times

Control Functions(option)
Set-points: One set-point

Control relay:
Relay energized mode:
1 Relay, FORM-C, 5A/230Vac, 10A/115V
Energized levels compare with set-points: Hi / Lo / Hi.HLd / Lo.HLd programmable Start delay / Energized \& De-energized delay / Hysteresis Energized Latch
Start band(Minimum level for Energizing): 0~9999counts Start delay time: 0:00.0~9(Minutes):59.9(Second) Energized delay time: $0.00 .0 \sim 9$ (Minutes):59.9(Second) De-energized delay time: $0.00 .0 \sim 9$ (Minutes):59.9(Second) Hysteresis: 0~5000 counts

Analogue output(option)	
Accuracy:	$\leq \pm 0.1 \%$ of F.S.
Ripple:	$\leq \pm 0.1 \%$ of F.S.
Response time:	$\leq 100 \mathrm{~m}$-sec. (10-90\% of input)
Isolation:	AC 2.0 KV between input and output
Output range:	Specify either Voltage or Current output in ordering Voltage: $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V} / 1 \sim 5 \mathrm{~V}$ programmable
	Voltage: $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V} / 1 \sim 5 \mathrm{~V}$ programmable Current: $0 \sim 10 \mathrm{~mA} / 0 \sim 20 \mathrm{~mA} / 4 \sim 20 \mathrm{~mA}$ programmable
Output capability:	Voltage: 0~10V: $\geq 1000 \Omega$;
	Current: 4(0)-20mA: $\leq 500 \Omega$ max
Functions:	Ro.HS (output range high): Settable range: -19999~29999
	Ro.L 5 (output range Low): Settable range: -19999~29999
Digital fine adjust:	Ro.Pro: Settable range: -38011~27524
	Ro.5Pn: Settable range: $-38011 \sim+27524$

DIMENSIONS

■ INSTALLATION
The meter should be installed in a location that does not exceed the maximum operating temperature and provides good air circulation.

CONNECTION DIAGRAM

Please check the voltage of power supplied first, and then connect to the specified terminals. It is recommended that power supplied to the meter be protected by a fuse or circuit breaker.

Power Supply

Input connection

RS485 Communication Port

■ FUNCTION DESCRIPTION

Scaling function:
Setting the [Lo.5C] (Low scale) and [H .5C] (High scale) in [in PUt [rodP] to relative input signal. Reverse scaling will be done too. Please refer to the figure as below,

*Too narrow scale may course display lower resolution.

Display \& Functions

Max / Mini recording:
The meter wills storage the maximum and minimum value in [user level] during power on in order to review drifting of PV.

Display functions:
(Please refer to step A-07)
PV / Max(Mini) Hold / RS 485 programmable in [dSPLY] function of [inPUt [rould

Present Value P_{u} : The display will show the value that Relative to Input signal.
Maximum Hold h R $4 . \mathrm{Hd} /$ Minimum Hold n n HHd : The meter will keep display in maximum (minimum) value during power on, until press front key to reset (If the down key function in [inPUt [rouP] has been set to $\overline{\mathrm{n}} \mathrm{r} 5 \mathrm{st}$.)

- Please find the [. $\mathbf{1}$ sticker that enclosure the package of the meter to stick on the right side of square orange LED
Max. (Mini.) Hold \& Reset

Remote Display by RS485 command 5485 :
The meter will show the value that received from RS485 sending. In past, The meter normally receive $4 \sim 20 \mathrm{~mA}$ or $0 \sim 10 \mathrm{~V}$ from AO or digital output from BCD module of PLC. We support a new solution that PV shows the value from RS485 command of master can so that can be save cost and wiring from PLC.

Front key functions:
Relative PV / PV Hold / Reset for maxi(mini) hold / Rese for relay energized latch programmable in [dn.ЦEY] function of [inPUt [rolep]
Relative PV -EL.PU : [dn.UEY] function can be set to be $-E L P_{U}$ function. When user press the $\boldsymbol{T}^{2} k e y$, the display will show the differential value($\Delta \mathrm{PV}$), until press 『key again.
$>$ Please find the sticker to stick on the right side of square green LED.
PV Hold Pu.HLd : [dn.UEY] function can be set to be Pu.HL d function. When user press the Tkey, the display will be hold until press the Fkey again.
\rightarrow Please find the \quad Pd. 1 sticker to stick on the right side of square green LED

Reset for Max(Mini) Hold: when the [$\triangle 5 P L Y$] in
[inPut [roup] set to be $\overline{\mathrm{n} R} \mathrm{H} . \mathrm{Hd}$ or or $\overline{\mathrm{n}} \mathrm{in} \cdot \mathrm{Hd}$, [dn.UEY] function can be set to be $\bar{n} . \mathrm{r} 5 \mathrm{st}$ to reset the display when it is holding in maxi or mini value.
Reset for relay energized latch: when the $[r y i n d]$ in [rELRY GroUP] set to be H.HLd or Lo.HLd, [dn.LEY] function can be set to be - - .r 5t to reset the relay when it is energizing and latching.
Low cut:
If the setting value is positive, it means when the absolutely value of PV \leq Setting value, the display will be 0 . If the setting value is negative, it means when the PV under setting value (PV $\leq-$ Setting value), the display will be setting value.

Digital fine adjustment:

Users can get Fine Adjustment for Zero \& Span of PV by front key of the meter, and "Just Key In" the value which user want to show in the current input signals.
Especially, the $\left[P u . r_{r}\right.$ o $]$ \& $\left[P_{u} .5 P_{n}\right]$ are not only in zero \& span of PV, but also any lower point for [Pu. Pr_{o}] \& higher point for [$\mathrm{Pu} .5 \mathrm{P}_{\mathrm{n}}$]. The meter will be linearization for full scale.
The adjustment can be clear in function [P.S.CLr]

Reading Stable Function

Average:
Basically, the sampling rate of meter is $15 \mathrm{cycles} / \mathrm{sec}$. If the function set to be 3 times, It means the meter will update of display will be 5 times/sec.

Remark: The higher average setting will cause the response time of Relay and Analogue output slower.

Moving average:

If the function to be set 3 times, the meter will update delay in first 3 samples, then it will update 15 times/sec continuously.

Remark: The higher moving average setting wouldn't cause the response time of Relay and Analogue output slower after first 3 samples.
Digital filter: \quad The digital filter can reduce the magnetic noise in field.

Control functions(option)

Relay energized mode:
Hi / Lo / Hi.HLd / Lo.HLd programmable
H_{1} : Relay will energize when PV > Set-Point
Lo: Relay will energize when PV < Set-Point

Hi / Lo Relay Energized			ig. 1	
[ry_.5P] Hi Setting				
[ry_.id]				
H, Hi Relay Energized		ON		
Lo Lo Relay Energized			ON	

Hi.HLd (Lo.HLd): When the PV is Higher (or lower) than set-point, the relay will be energized and latch until manual reset by from key in [user level] or press down key to reset(If the [dn.LEY] function set to be - y.r 5t

Energized functions: Start delay / Energized \& De-energized delay / Hysteresis

Analogue output(option)

Please specify the output type either an o $\sim 10 \mathrm{~V}$ or $4(0) \sim 20 \mathrm{~mA}$ in ordering. The programmable output low and high scaling can be based on various display values. Reverse slope output is possible by reversing point positions.
Output range:
Voltage: $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V} / 1 \sim 5 \mathrm{~V}$ programmable Current: $0 \sim 10 \mathrm{~mA} / 0 \sim 20 \mathrm{~mA} / 4 \sim 20 \mathrm{~mA}$ programmable Functions: \quad Ro. HS (output range high): setting the Display value High to versus output range High(as like as 20 mA in 4~20) Ro.L 5 (output range Low): setting the Display value Low to versus output range Low(as like as 4mA in 4~20)

The range between Ro.HS and Ro.L 5 should be over 20% of span at least; otherwise, it will be got less resolution of analogue output.

Fine zero \& span adjustment:

Users can get Fine Adjustment of analogue output by front key of the meter. Please connect standard meter to the terminal of analogue output. To press the front key (up or down key) of meter to adjust and check the output.
[Mo.?ro]: Fine Zero Adjustment for Analog Output; Settable range: -38011~27524;
[$\mathrm{Ro} .5 \mathrm{P}_{\mathrm{n}}$]: Fine Span Adjustment for Analog Output; Settable range: -38011~27524;

RS 485 Communication(option)

The RS485's protocol is Modbus RTU mode, and baud rate up to 38400 bps. It's convenience to remote monitoring, display for reading.

Remote display

The meter will show the value that received from RS485 command. In past, The meter normally receive $4 \sim 20 \mathrm{~mA}$ or $0 \sim 10 \mathrm{~V}$ from AO or digital output from BCD module of PLC. We support a new solution that PV shows the value from RS485 command of master so that can be save cost and wiring from PLC.
When the [SSPL 4] set to be RS485, it means, the PV screen will show the number from RS485 command \& data. The data (number) will be same as PV that will compare with set-point, analogue output and ECI functions so that is to control analogue output, relay energized and so on.

ERROR MESSAGE

BEFORE POWER ON，PLEASE CHECK THE SPECIFICATION AND CONNECTION AGAIN．
SELF－DIAGNOSIS AND ERROR CODE：

DISPLAY	DESCRIPTION	REMARK
OuFL	Display is positive－overflow（Signal is over display range）	（Please check the input signal）
－ouFL	Display is negative－overflow（Signal is under display range）	（Please check the input signal）
OuFL	ADC is positive－overflow（Signal is higher than input 120\％）	（Please check the input signal）
－ouFl	ADC is negative－overflow（Signal is lower than input－120\％）	（Please check the input signal）
$E E P \stackrel{F R ~ L ~}{\text { L }}$	EEPROM occurs error	（Please send back to manufactory for repaired）
B，［．пE $¢ \mathrm{P}_{\mathrm{U}}$	Calibrating Input Signal do not process	（Please process Calibrating Input Signal）
R，L \Rightarrow FR L	Calibrating Input Signal error	（Please check Calibrating Input Signal）
RoE．nE $\Rightarrow \mathrm{P}^{\text {L }}$	Calibrating Output Signal do not process	（Please process Calibrating Output Signal）
RoL \leftrightarrows FR L	Calibrating Output Signal error	（Please check Calibrating Output Signal）

OPERATING KEY

＊Please access to the Programming Level to check and set the parameters when users start to run the meter
\square Operating Key： 4 keys for 哑Enter（Function）／园Shift（Escape）／园Up key／DDown key
\square The meter has designed operation similar as PC＇s and Enter．In any page，press ainey means＂enter＂or＂confirm setting＂，and press 园key means＂escape（（Esc）$)$＂or＂shift＂．
－In Programming Level，the screen will return to Measuring Page after do not press any key over 2 minutes，or press for 1 second．

	Function Index	Setting Status
O Enter／Fun key	（1）In any page，press 畨 to access the level or function index （2）From the function index to access setting status	（3）Setting Confirmed，save to EEProm and go to next function index
(= \square Shift key	（1）In measuring page，press for 1 second to access user level． （2）In function index，press for 1 second to go back upper level． （3）In function group index，press for 1 second to go back measuring page	（4）In setting status，press to Shift the setting position． （5）In setting status，press for 1 second to abort setting and go back this function index．
$\square(=\Delta)$ Up key	（1）In function index，press index	（2）In setting status for function，press to select function （3）During number Setting，press can roll the digit up
(= Down key	（1）In Function Index Page，press will go to the next Function Index Page．	（2）In setting status for function，press to select function （3）During number Setting，press can roll the digit down．

■FRONT PANEL

Numeric Screens

$0.8^{\prime \prime}$（ 20.0 mm ）red high－brightness LED for $42 / 3$ digital present values．
I／O Status Indication
－Relay Energized： 1 square red LED
RL1 display when Relay 1 energized；
－RS485 Communication： 1 square orange LED
COM will flash when the meter is receive or send data，and COM flash quickly means the data transient quicker．
－Max／Mini Hold indication： 2 square orange LEDs
WID displayed：When the display function has been selected in Maximum or Minimum Hold function．
Stickers：
Each meter has a sticker what are functions and engineer label enclosure．
－Relay energized mode：UII Hi L0 LI DO
－Down key functions mode：
PVIU PV．H（PV Hold）／Fard Tare／DI DI（Digital Input）
［inf M．RS（Maximum or Minimum Reset）／
［．RS R．RS（Reset for Relay Latch）
－Engineer Label：over 80 types
Operating Key： 4 keys for Eniner（Function）／Shift（Escape）／
\square Up key／PDown key
－Pass Word：Settable range：0000～9999
User has to key in the right pass word so that get into［Programming level］．Otherwise，the meter will go back to measuring page．If user forgets the password，please contact with the service window．
\square Function Lock：There are 4 levels programmable．
－None nonE：no lock all．
－User Level USEr：User Level lock．User can get into User Level for checking but setting．
－Programming Level Enf ：Programming level lock． User can get into programming level for checking but setting．
－ALL RLL：All lock．User can get into all level for checking but setting．
－Front Key Function：
 programmable．

■ OPERATING DIAGRAM (The detail description of operation, please refer to operating manual.)

[^0]
[^0]: - Plesae refer to operating manual for detail description

 Plesae refer to operating manual for Banks function description and operating.

